
Open-Transactions: Secure Contracts between Untrusted Parties

Chris Odom

chris@opentransactions.org

Abstract

A low-trust notary could replace conventional transaction servers and would allow users to gain
access to safe, fast, inexpensive, off-chain transactions with increased functionality. We propose
a solution that enables parties to contract with each other without being able to defraud each
other, and to issue currencies and to prove all balances, as well as prove which instruments are
valid and which transactions have closed, without storing any history except for the last signed
receipt. Theft of reserves and counterfeiting are prevented by storing cryptocurrency reserves in
multi-signature voting pools consisting of notaries who audit each other in real time and then
vote multi-signature on the blockchain to release coins only when authorized by users’ signed
receipts.

1. Introduction

The Bitcoin blockchain is an ideal medium
for issuing currencies and for censorship-
resistant, peer-to-peer payments[6]. But

the trade-off is that blockchain transactions are
slow and expensive compared to using a server.
Users also commonly employ server-based sys-
tems for added functionality such as market
exchange and smart contracts. Unfortunately,
servers in use today must be trusted to hold
the funds, to accurately maintain their internal
ledger, and to faithfully execute the transac-
tions requested by their users. As a result,
problems traditionally associated with third
party intermediaries have crept into the Bitcoin
ecosystem, including reversible transactions,
verified accounts, frozen balances, and expro-
priated funds.

What is needed is a transaction server based
on cryptographic proof instead of trust, allow-
ing any willing parties who wish to contract
with each other to enjoy the benefits of a server
without needing to trust it. In this paper, we
propose a solution that demotes transaction
servers to mere notaries, only able to counter-
sign contracts that have first been signed by
their clients. Since only each client has access
to its own private key, receipts are unforgeable.
Theft of reserves and counterfeiting are pre-
vented by storing bitcoins and colored coins
in multi-signature voting pools consisting of

notaries who audit each other in real time and
then vote multi-signature on the blockchain to
release coins only when authorized by users’
signed receipts.

2. Transactions

I. Financial Instruments

We define a transaction as a group of opera-
tions on contracts capable of objectively prov-
ing balances (and changes of balance) between
adversarial parties. Open-Transactions imple-
ments financial instruments as Ricardian Con-
tracts, which are contracts that can be under-
stood by humans as well as manipulated by
software[3].

All transactions use the same basic struc-
ture: the parties involved sign agreements
which are then countersigned by an indepen-
dent notary server. Furthermore, transactions
are irreversible since the receipts are always
formed and signed on the client side first, be-
fore being notarized by any server. This pre-
vents the notary from falsifying receipts, since
it can’t forge the client’s signature.

This basic structure can be built upon to cre-
ate many types of financial instruments. Those
supported by Open-Transactions include:

• Transfer. An atomic movement of funds
from one account to a different account,
like a bank account-to-account transfer.

1

mailto:chris@opentransactions.org

• Cash. Untraceable cryptographic tokens
which can be securely redeemed by the
recipient without revealing the sender.1

• Cheque. A payment which is not de-
ducted from the sender’s account until
the recipient claims it.

• Voucher. A payment which is deducted
from the sender’s account at the time of
creation.

• Invoice. A payment request which the
recipient can opt to pay from any of his
accounts.

• Market Offer. An open agreement to ex-
change a given quantity of one unit type
for a given quantity of another unit type.

• Smart Contract. A customizable agree-
ment between multiple parties, contain-
ing user-defined scripted clauses, hooks,
and variables.

II. Destructible Receipts

In the solution we propose, each notary-signed
receipt contains a copy of the original user-
signed request.2 Since that request also in-
cludes a statement of the balance, we can al-
ways prove the current balance using the most
recent receipt.3

In addition, we can prove which instru-
ments are still valid by including a list of open
transaction numbers on each signed receipt[7].

Open-Transactions is thus able to prove the
balance, as well as which instruments are valid,
and which transactions have closed, without
having to store any history except the last
signed receipt.

Does this mean that parties should destroy
their historical receipts? Not necessarily. But
it should be noted that parties are not forced
to keep their receipt history in order to prove
the current state. Proofs which require a full
history are O(n), whereas Open-Transactions
proofs are O(1). O(1) balance proofs are prefer-

able to O(n) proofs, because even though most
users would choose to save their transaction
history, the risk of a balance proof failing due
to data loss does not grow without bound over
time.

A few communication tables will be illustra-
tive. First let’s see how Alice takes ownership
of some transaction numbers:

Alice - I’m all out of transaction numbers.
Please give me some more.
Signed: Alice

Notary - Okay, I have placed a receipt con-
taining numbers #700 through #799
in your nymbox.
Signed: Notary

Alice - I hereby accept transaction num-
bers #700 through #799. You may re-
move the receipt from my nymbox.
Signed: Alice

Notary - Done.
Signed: Notary

Bob needs to do the same thing:

Bob - I’m all out of transaction numbers.
Please give me some more.
Signed: Bob

Notary - Okay, I have placed a receipt con-
taining numbers #800 through #899
in your nymbox.
Signed: Notary

Bob - I hereby accept transaction num-
bers #800 through #899. You may re-
move the receipt from my nymbox.
Signed: Bob

Notary - Done.
Signed: Notary

At this point, Alice is now responsible for
transaction numbers #700 through #799, and
Bob is responsible for transaction numbers
#800 through #899.4

1Based on work by David Chaum[2]. Open-Transactions currently includes Lucre[5] by Ben Laurie.
2Based on work by Ian Grigg[4].
3Based on work by Bill St. Clair[13].
4Client software should always remember the highest transaction number it has ever accepted, and should never in the

future accept any number lower than that. Otherwise the notary could trick the client into accepting responsibility for a
previously-used transaction number, and thereby defraud the client by processing the same instrument twice.

2

Alice is now able to create a cheque payable
to Bob:

Cheque #700
Amount: 65
To: Bob
Signed: Alice

So far no balances have changed yet. Alice
gives the cheque to Bob who deposits it into
his account:

Bob - I’m using Txn #800 to deposit this
cheque in the amount of 65 units.
- My last balance was 350, so my new
signed balance will be 415 units.
- Transaction numbers #801 through
#899 will still be signed-out to me.
Signed: Bob

Notary - Success.
Signed: Notary
[Note: at this point, the notary
places a cheque receipt into Alice’s
inbox, and moves 65 units from Al-
ice’s account to Bob’s.]

What does the notary verify when Bob
performs his cheque deposit? Among other
things:

• Did Bob sign this cheque deposit?
(He did. Good.)

• This cheque deposit is #800. Is that trans-
action number currently signed out to
Bob? (It is. Good.)

• Bob claims that after this deposit is com-
plete, transaction numbers #801 through
#899 will be the numbers still signed out
to him. Is that true? (It is. Good.)

• Does Bob actually own the account he is
depositing into? (He does. Good.)

• After the deposit is complete, will Bob’s
new balance actually be 415 units?
(It will. Good.)

• Is there actually a cheque attached to this
deposit? (There is. Good.)

• Is the cheque drawn on an account of the
same asset type as that of the account
that Bob is depositing into? (It is. Good.)

• Is the cheque signed by Alice?

(It is, good.)
• Does Alice own the account the cheque

is drawn on? (She does. Good.)
• The cheque is #700. Is that transaction

number currently signed out to Alice?
(It is. Good.)

• Does Alice already have a cheque receipt
for #700 in her inbox?
(She does not. Good.)

• Are there sufficient funds in Alice’s ac-
count to cover this cheque?
(There are. Good.)

Satisfied with these things, the notary coun-
tersigns Bob’s deposit. He now has access to
spend those funds.

Later, Alice checks her account’s status:

Alice - What is my current account status?
Signed: Alice

Notary - There is a cheque receipt #700 in the
amount of 65 units in your inbox.
- Therefore, though your last signed
balance was 1000, your current bal-
ance is 935 units.
Signed: Notary

Of course Alice’s client software doesn’t
just accept this information at face value, but
verifies it against her last signed receipt in a
process similar to the notary’s verification of
Bob’s deposit. After that is satisfied, she then
processes her inbox:

Alice - I’m using Txn #701 to process my
inbox.
- You may remove cheque receipt
#700 (in the amount of 65 units) from
my inbox.
- My last signed balance was 1000, so
my new signed balance will be 935
units.
- Transaction numbers #702 through
#799 will still be signed-out to me.
Signed: Alice

Notary - Success.
Signed: Notary

It should be noted that the notary would
not have been safe to remove the cheque receipt

3

from Alice’s inbox until this point. Only now
that Alice has signed a new balance agreement
can the cheque receipt be removed, since be-
fore that, the notary needed the cheque receipt
in order to prove the current balance.

Now that Alice has processed her inbox,
her new signed balance is 935 units and she is
still responsible for transaction numbers #702
through #799. (#700 and #701 are now closed.)
She can discard any previous receipts.

Meanwhile Bob’s new signed balance is 415
units and he is still responsible for transac-
tion numbers #801 through #899. (#800 is now
closed.) He can also discard any previous re-
ceipts.

If Bob were to now attempt to deposit
cheque #700 a second time, it would fail to
verify, since Alice is no longer responsible for
Txn #700. But what if he tried before she pro-
cessed her inbox? His attempt would still fail,
since there would already be a cheque receipt
#700 in her inbox. In Open-Transactions you
simply cannot deposit the same cheque twice.

Thus at all times throughout the process, all
parties are able to prove their current balance,
as well as which instruments are valid and
which transaction numbers are closed, without
storing any history except their last signed re-
ceipt. Alice’s own signature proves these things
to Alice, and Bob’s own signature proves these
things to Bob. The notary is unable to defraud
them.

III. Recurring Transactions

While simple transactions occur as described
above, recurring transactions are slightly more
involved, requiring an opening transaction
number for each user, and a closing transaction
number for each asset account.

Consider an example where Alice places
a market offer. Three transaction numbers in
total must be used by Alice:

Market Offer #702
Type: Bid
Purchasing: Gold
Amount: 200 grams
Into: Alice’s Gold Acct
Using Closing Txn: #703
Maximum Price: $40 per gram
From: Alice’s Dollar Acct
Using Closing Txn: #704
Signed: Alice

In the above market offer, #702 is the open-
ing number for Alice (the user), #703 is the
closing number for Alice’s Gold Account, and
#704 is the closing number for Alice’s Dollar
Account. Each time a trade occurs against that
market offer, two market receipts will be created,
with one placed into Alice’s Gold Account’s
inbox, and the other placed into Alice’s Dollar
Account’s inbox. Both market receipts will be
in reference to the opening #702. Any changes
in balance for those two accounts must be jus-
tified by market receipts in the same amount,
and each market receipt contains a copy of
Alice’s original offer.

Once the market offer expires or is canceled,
a final receipt in reference to #702 will be placed
into each inbox. Final receipt #703 for Alice’s
Gold Account, and final receipt #704 for Al-
ice’s Dollar Account, both in reference to Al-
ice’s original market offer #702. On Alice’s
next transaction, whatever that may be, she
must remove #702 from her statement of open
transaction numbers, closing it permanently.

When Alice processes her Gold Account’s
inbox, she can close final receipt #703 as long
as she also closes all related market receipts in
her Gold Account’s inbox, and signs the new
gold balance. Similarly, when she processes
her Dollar Account’s inbox, she can close final
receipt #704 as long as she also closes all re-
lated market receipts in her Dollar Account’s
inbox, and signs the new dollar balance.

All types of recurring transactions, includ-
ing smart contracts, follow a similar process.
All of this is managed "behind the scenes" by
the client software and hidden from the user,
with the end result that recurring transactions
fit into the same security model as simple trans-

4

actions.

3. Counterfeiting

Since a notary is unable to falsify Alice’s re-
ceipts against her will, the only crime left is
counterfeiting funds with a dummy account.
That is, even without falsifying any of Alice’s
receipts, a notary can still create a dummy ac-
count and then sign a false receipt for that
dummy account, and thus create counterfeited
funds which can then be spent to Alice or Bob.
Thus, counterfeiting is the only crime still pos-
sible by an Open-Transactions notary.

Fortunately, counterfeiting can be easily
prevented by auditing the receipts. But while it
is technically easy to construct an audit server,
we still need a party who is incentivized to
operate that audit server. And the solution to
incentive depends on the various methods by
which currencies are issued. They are:

1. The issuer directly issues his currency
onto a specific notary.

2. The issuer issues his currency as a col-
ored coin onto the blockchain.

3. The currency is a cryptocurrency (which
has no issuer.)

Let’s examine these in turn:

The issuer directly issues his currency onto
a specific notary. If, for example, there is an
issuer of a gold-based currency who is actually
storing gold bars in a vault somewhere, he can
act as a normal Open-Transactions user and
just directly issue units of his currency onto
a notary. In this case there is no blockchain
involved whatsoever.

The drawbacks are:

1. The issuer can be coerced into terminat-
ing his relationship with a specific notary.

2. The issuer must operate an audit server
himself in order to prevent that notary
from counterfeiting.

3. His currency will only be available on
that specific notary.

The issuer issues his currency as a colored
coin onto the blockchain. In this case, the
currency can circulate independently on the
blockchain itself, outside the confines of any
notary. Thus the issuer has no connection to
any specific notary. Whether or not a user
chooses to upload some of his coins to a notary
is entirely outside of the issuer’s knowledge or
control. In this case the issuer does not need to
audit any notary, and his only concern is that
the gold in his vault matches up with the col-
ored coins he has issued onto the blockchain.

The question remains: if a user does choose
to upload some of his colored coins to a no-
tary, how will that notary be audited to prevent
counterfeiting inside Open-Transactions?

Here are the basic options:

1. The user can just trust the notary to hold
the coins, and trust the notary not to be
audited. (This is by far the worst option
but it is the standard practice today in
the Bitcoin world.)

2. Users can choose an external auditor to
receive a percentage of their transaction
fees. This is the solution favored by the
Voucher-Safe[1] project.

3. Users can upload their colored coins into
a multi-signature voting pool composed
of several notaries who all audit each
other in real time. In this case the audit-
ing is effectively the same as with normal
bitcoins. (Below.)

The currency is a cryptocurrency (which has
no issuer.) Bitcoin, like all cryptocurrencies,
does not have a real-world "issuer", but instead
coins are created by the peer-to-peer network
itself.

If a user chooses to transact his bitcoins
off-chain using an Open-Transactions notary,
he can do so by uploading those coins into a
multi-signature voting pool composed of sev-
eral notaries who all audit each other in real
time.

5

This solves two problems at once:

1. Counterfeiting. Multiple parties are au-
diting each notary, which prevents it
from counterfeiting on its internal ledger.

2. Theft. An individual notary is also in-
capable of stealing coins out of the pool,
since a multi-signature vote is necessary
to retrieve the funds. (And those votes
are controlled by the auditors.)

4. Voting Pools

We propose voting pools as an arrangement of
notaries to securely store and account for cus-
tomer cryptocurrency deposits, and to redeem
valid withdrawal requests even in the event the
customer’s notary of choice has completely dis-
appeared. Voting pools are designed to ensure
that no single person or organization can ever
perform unilateral actions on deposited funds,
in order to reduce the risk of loss or theft, and
custodial liability[10]. Each notary in the vot-
ing pool operates its own audit server, and each
auditor has a corresponding blockchain wal-
let. The blockchain wallet manages the multi-
signature transaction generation, as well as a
hierarchical and deterministic list of addresses
for bitcoins[12] and colored coins[11].

When a customer deposits cryptocurrency
into a voting pool, he receives corresponding
units in his account on his notary of choice[8].
How? Each audit server watches the receipt
stream for requests to deposit or withdraw bit-
coins or colored coins from the voting pool,
and then communicates with its bitcoin wal-
let as appropriate. The auditor independently
verifies the Open-Transactions operations of
all notaries in the voting pool, as well as the
bitcoins held by the pool on the blockchain it-
self. The auditor uses this audit data to know
when it should direct the wallet to create a
withdrawal transaction[9], and it is also the
component responsible for information sharing
and achieving consensus between all members
of the pool. Effectively each auditor conducts
a permanent, real time proof-of-reserves au-
dit against all of the notaries in the pool, and

simultaneously enforces it. It is the auditors
and the wallets who hold the keys to creating
blockchain transactions at the request of the
user, and the auditors must all act by consen-
sus and with the cooperation of the wallet to
create multi-signature blockchain transactions.

5. Smart Wallets

While a voting pool approaches the highest
level of security that is theoretically possible on
the server side, it is still not perfect: m-of-n no-
taries may still collude. In fact no server-centric
solution achieves perfection. Even Bitcoin it-
self does not entirely eliminate risk, but rather,
distributes risk effectively across a peer-to-peer
network.

Ultimately, in order to achieve a practical
distribution of risk, the client software must
take responsibility for its own funds, keeping
some safe on the blockchain, and distributing
some across multiple voting pools for easy ac-
cess to fast, inexpensive, high-functional trans-
actions.

Open-Transactions is client-centric. The
smart wallet of the future will be responsible
for key management, interfacing with hard-
ware keys, backups of wallet data, and most
importantly, distribution of funds across the
blockchain and across multiple voting pools.

6. Conclusion

We have proposed a notary server based on
cryptographic proof as a replacement for trans-
action servers based on trust. Transaction
servers traditionally have authority over user
balances. To solve this, we proposed the use
of triple-signed receipts in order to prevent the
notary from changing a user’s balance without
his signature, or falsifying any of his transac-
tions. Furthermore, we proposed the use of
inboxes and transaction numbers in order to
make it possible for all parties to prove which
instruments are valid, and which transactions
have closed, without storing any history ex-
cept the last signed receipt. Counterfeiting by
the notary is still a problem. To solve this, we

6

proposed the use of auditing, and we must
provide an incentive for parties to operate au-
dit servers. In the case where an issuer has
issued his currency directly onto a notary, we
proposed that the issuer must directly audit
that notary. Alternately, client software may
pay a percentage of its transaction fees to an
independent auditor. In the case of bitcoins or
colored coins, we proposed the use of multi-
signature voting pools. These voting pools
prevent the theft of funds by any single notary,

and they also provide multiple notaries with
incentive to audit each other, which prevents
counterfeiting. While a voting pool approaches
the highest level of security that is theoreti-
cally possible on the server side, m-of-n pool
members may still collude, and so we have pro-
posed that the smart wallet of the future must
achieve a practical level of security by automat-
ing the distribution of client funds across the
blockchain and multiple voting pools.

References

[1] Voucher Safe. http://www.voucher-safe.org/tiki-index.php?page=System+Utility.

[2] David Chaum. Blind Signatures for Untraceable Payments. In D. Chaum, R.L. Rivest, and A.T.
Sherman, editors, Advances in Cryptology Proceedings of Crypto 82, pages 199–203, 1983.

[3] Ian Grigg. The Ricardian Contract. In Proceedings of IEEE Workshop on Electronic Contracting July
6, pages 25–31, 2004.

[4] Ian Grigg. Triple Entry Accounting, 2005. http://iang.org/papers/triple_entry.html.

[5] Ben Laurie. Lucre: Anonymous Electronic Tokens v1.8. Technical report, 1999, 2008.

[6] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. http://bitcoin.org/
bitcoin.pdf.

[7] Chris Odom. Triple Signed Receipts, 2010. http://opentransactions.org/wiki/index.php?
title=Triple-Signed_Receipts.

[8] Justus Ranvier. Voting Pool Deposit Process. http://opentransactions.org/wiki/index.
php/Voting_Pool_Deposit_Process.

[9] Justus Ranvier. Voting Pool Withdrawal Process. http://opentransactions.org/wiki/index.
php/Voting_Pool_Withdrawal_Process.

[10] Justus Ranvier. Voting Pools. http://opentransactions.org/wiki/index.php/Voting_
Pools.

[11] Justus Ranvier and Jimmy Song. Hierarchy for Colored Voting Pool Deterministic Multisig Wallets.
https://github.com/Open-Transactions/rfc/blob/master/bips/bip-vpc01.mediawiki.

[12] Justus Ranvier and Jimmy Song. Hierarchy for Non-Colored Voting Pool Deterministic Multi-
sig Wallets. https://github.com/Open-Transactions/rfc/blob/master/bips/bip-vpb01.
mediawiki.

[13] Bill St. Clair. Truledger in Plain English, 2008. http://truledger.com/doc/plain-english.
html.

7

http://www.voucher-safe.org/tiki-index.php?page=System+Utility
http://iang.org/papers/triple_entry.html
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://opentransactions.org/wiki/index.php?title=Triple-Signed_Receipts
http://opentransactions.org/wiki/index.php?title=Triple-Signed_Receipts
http://opentransactions.org/wiki/index.php/Voting_Pool_Deposit_Process
http://opentransactions.org/wiki/index.php/Voting_Pool_Deposit_Process
http://opentransactions.org/wiki/index.php/Voting_Pool_Withdrawal_Process
http://opentransactions.org/wiki/index.php/Voting_Pool_Withdrawal_Process
http://opentransactions.org/wiki/index.php/Voting_Pools
http://opentransactions.org/wiki/index.php/Voting_Pools
https://github.com/Open-Transactions/rfc/blob/master/bips/bip-vpc01.mediawiki
https://github.com/Open-Transactions/rfc/blob/master/bips/bip-vpb01.mediawiki
https://github.com/Open-Transactions/rfc/blob/master/bips/bip-vpb01.mediawiki
http://truledger.com/doc/plain-english.html
http://truledger.com/doc/plain-english.html

	Introduction
	Transactions
	Financial Instruments
	Destructible Receipts
	Recurring Transactions

	Counterfeiting
	Voting Pools
	Smart Wallets
	Conclusion

